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Abstract— In this paper a novel architecture of multiplier and 
accumulator (MAC) for high speed arithmetic is presented. 
The architecture adopts radix-4 modified booth algorithm 
(MBA) and hybrid carry save adder, in which the accumulator 
that has the largest delay in MAC was merged into Carry save 
adder (CSA) block. The performance of final adder block, 
which determines critical path of the architecture, is improved 
by reducing number of input bits of the final adder itself. 
Moreover the design accumulates the intermediate results in 
the type of sum and carry bits instead of the output of the final 
adder, which made it possible to optimize the pipeline scheme. 
Using this architecture the overall performance can be 
elevated twice that of previous architectures. The proposed 
design was coded in verilog HDL and simulated using Xilinx 
ISE tool. FPGA Spartan 3E starter kit was used for 
implementation of design.  
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I. INTRODUCTION 

Multiplication can be considered as a series of repeated 
addition operations. The number to be added is the 
multiplicand, the number of times that it is added is the 
multiplier, and the result is the product. The multiplication 
operation is generally performed by multiplying each term 
in multiplier with whole multiplicand, thus generating a 
partial product and final summing all the partial products to 
obtain the result. This repeated method is rather slow that it 
is almost always replaced by an algorithm.  

It is possible to decompose multipliers into two steps. 
The first step is dedicated to the generation of partial 
products, and the second one collects and adds them. The 
speed of the multiplication and addition determines the 
execution speed and performance of the entire calculation. 
Many of the Digital signal processing (DSP) applications 
are accomplished by repetitive multiplication and addition 
operations. Therefore multiplier-and-accumulator (MAC) 
unit is the essential element of the digital signal processor. 
In order to increase the speed of a multiplier, the number of 
the partial products generated must be reduced. If N-bit data 
are multiplied, the number of the generated partial products 
is proportional to N, thus the execution time. The 
accumulation operation has the largest delay in MAC. 
Therefore in-order to enhance performance of MAC, an 
architecture that uses modified Booth algorithm and hybrid 
carry save adder is proposed. 

 

This paper is organized as follows. In Section II, a simple 
introduction of MAC will be given, and the architecture for 
the proposed design will be described in Section III. In 
Section IV, Simulation result will be analyzed. Finally, the 
conclusion will be given in Section V.  

 
II. MAC UNIT 

In this section, a brief description of MAC unit and its 
operation is introduced. In general, MAC unit consists of 
multiplier and an adder. Multiplier performs multiplication 
operation between multiplicand and multiplier where as 
adder adds the multiplier result to the contents of 
accumulator. This process of multiplication and 
accumulation continues to operate until generation of final 
result, that itself stored in the accumulator. The number of 
clock cycles required for the operation depends on the 
number of input bits fed to the MAC and the speed of the 
operation depends on the number of partial products 
generated during the operation. 

 
Fig. 1  Basic steps in MAC operation 

 
Multiplication and accumulation operation can be 

divided into four operational steps as shown in Fig.1. The 
first is Booth encoding in which partial products are 
generated from the multiplicand A and the multiplier B by 
applying algorithms. Since speed of operation depends on 
number of Partial products generated, booth encoding 
should be capable of reducing partial product count 
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effectively. The second is partial product summation which 
includes addition of all partial products. The next steps 
include the final addition and accumulation operations, 
which includes the process of accumulating the multiplied 
results. Multiplication and accumulation operation is done 
by multiplying the inputs, multiplier B and the multiplicand 
A. The obtained multiplication result P is added to the 
previous accumulation content Zn-1 as the accumulation 
step. Final result Z of the operation will be stored in 
accumulator. Hardware architecture of MAC is shown in 
Fig. 2. 

 
Fig. 2  General Hardware architecture 

 
A. Representing in terms of Equations  

The N-bit 2’s complement binary number can be 
expressed as 

                            N-2 
A = -2N-1aN-1 +    ∑   ai2

i,      ai  € 0,1.             (1) 
                                     i = 0 
Eq. (1) can written as 
 
                 N/2 - 1 

A =    ∑        di 4i                                                                     (2) 
                   i = 0 
where 

di  =  -2 a2i+1 + a2i + a2i-1                                    (3) 
 
Similarly     
 
               N/2 - 1 

B =    ∑        di 4i                                                                      (4) 
                 i = 0 
where 

di  =  -2 b2i+1 + b2i + b2i-1                                    (5) 
 
Using above equations multiplication operation can be 

expressed as 
                              N/2 - 1 

P = A x B  =     ∑        di 2
2i B                                         (6) 

                                i = 0 
 

Therefore multiplication – accumulation result can be 
expressed as 

                                          N/2 – 1                    2N-1 
Z =  A x B  +  Zn-1  =     ∑        di 2

2i B +     ∑     zj2
j 

                                            i = 0                       j = 0  
                                                  
     ¥ i , j€ 0 to N                  (7) 
 

 

III. PROPOSED DESIGN 
In this section, brief description of proposed design will 

be discussed. The proposed design uses modified booth 
algorithm for booth encoding. If two N-bit numbers are 
multiplied and accumulated, the result generated is of 2N-
bit number and the critical path is determined by the 
accumulation operation. Therefore the accumulator which 
has the largest delay limits the performance of MAC. Even 
though pipeline scheme is applied, the delay of the last 
accumulator affects the performance of the MAC. 

 Therefore performance of MAC is improved by 
eliminating the accumulator itself and combining it with the 
CSA function. The critical path of the architecture which 
depends on accumulator is now determined by the final 
adder in the multiplier. In order to improve the performance 
of the final adder the number of input bits fed to it should 
be reduced. To reduce this number of input bits, the 
multiple partial products are compressed into a sum and a 
carry by CSA. 

 

 
Fig. 3 Proposed MAC operation 

 
 The MAC process steps presented in the previous 

section are rearranged, as shown in Fig.3, in which the 
MAC operation is organized into three steps. In this figure, 
the accumulation step has been merged into the process of 
adding the partial products and the final addition process in 
step 3 is not always run. Since accumulation is carried out 
using the result from step 2 instead of that from step 3 
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A. Radix-4 MBA 
The algorithm used here is Modified Booth’s algorithm 

(MBA) which approximately twice as fast as Booth’s 
algorithm. The modified Booth algorithm reduces the 
number of partial products by half in the first step, thus 
enhances performance of the design.  Radix-4 Modified 
Booth Algorithm is used for the proposed design, since it 
offers more ease of implementation for higher order bits. 
The algorithm involves shift and complement operations 
with only one final addition operation. In order to multiply 
A by B using the MBA, the algorithm starts from grouping 
Multiplier B by three bits (with one bit overlapping in each 
pair) and encoding into partial product scale factors {-2, -1, 
0, 1, 2}. The recoding table for the algorithm is shown in 
Table 1. Each row of table indicates a partial product scale 
factor and an operation to be performed on multiplicand A 
to generate partial product. For example ’0XA’ indicates 
multiplication of multiplicand A with zero (simply 
replacing with zeros), ‘1XA’ indicates shift operation of 
multiplicand A and ‘2XA’ indicates double shift operations 
of multiplicand A, where as negation indicates shift 
operation to be performed on 2’s complement of the 
multiplicand A . 

TABLE I 
Radix-4 Recoding table  

Xi+1 Xi Xi-1 Action 

0 0 0 0 × A 

0 0 1 1 × A 

0 1 0 1 × A 

0 1 1 2 × A 

1 0 0     -2 × A 

1 0 1     -1 × A 

1 1 0     -1 × A 

1 1 1 0 × A 

 
B. CSA and CLA 

The idea behind using CSA is to reduce delay further. 
The concept of CSA is to add three numbers together, x + y 
+ z, and convert it into 2 numbers c + s such that x + y + z = 
c + s, and do this in O(1) time. The reason why addition 
cannot be performed in O(1) time is because the carry 
information must be propagated. In CSA, carry information 
can be passed directly, until the very last step, unlike, 
normal addition, where three numbers are aligned and then 
preceded column by column addition. The three digits in a 
row are added, and any overflow goes into the next column. 
The number of bits of sums and carries to be transferred to 
the final adder is reduced by adding the lower bits of sums 
and carries in advance within the range in which the overall 
performance will not be degraded.  

 A 2-bit CLA is used to add the lower bits in the CSA.  A 
carry-look ahead adder improves speed by reducing the 
amount of time required to determine carry bits. Generally 
adders such as, ripple carry adder ,the carry bit is calculated 

alongside the sum bit, and each bit must wait until the 
previous carry has been calculated to begin calculating its 
own result and carry bits. The carry-look ahead adder 
calculates one or more carry bits before the sum, which 
reduces the wait time to calculate the result of the larger 
value bits. 
C. Hardware Architecture 

The hardware architecture of the proposed design is 
shown in Fig. 4. The N –bit MAC inputs, A and B, are 
converted into an (N+1) -bit partial products by passing 
through the Booth encoder. At most (N/2+1) partial 
products are generated. In the CSA and accumulator, 
accumulation is carried out along with the addition of the 
partial products. As a result, N -bit Sum S, Carry C and Z 
[N-1: 0] bits are generated.  

 

 
 

Fig.4 Hardware architecture for the Proposed MAC 
 
 These values are fed back and used for the next 

accumulation. The final result consists of higher order bits 
Z [2N-1: N] that are generated by adding Sum S and Carry 
C in the final adder and lower order bits Z [N-1: 0] that are 
already generated. This way of accumulating the sum and 
carry bits from the CSA instead of the output bits from the 
final adder, in the manner that the sum and carry bits from 
the CSA in the previous cycle are inputted to CSA, 
increases the output rate when pipelining is applied. Due to 
this feedback of both sum and carry, the number of inputs 
to CSA increases, compared to the standard design steps in 
Fig.1. 
D. FPGA 

A field-programmable gate array (FPGA) is an integrated 
circuit designed to be configured by the customer or 
designer. The FPGA configuration is generally specified 
using a hardware description language (HDL), can be used 
to implement any logical function and has the ability to 
update the functionality, partial re-configuration of the 
design and involves low non-recurring engineering cost. 
The most common FPGA architecture consists of an array 
of programmable logic components called logic blocks, I/O 
pads, and a hierarchy of reconfigurable interconnects that 
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allow the blocks to be wired together. Logic blocks can be 
configured to perform complex combinational functions. In 
most FPGAs, the logic blocks also include memory 
elements, which may be simple flip-flops or more complete 
blocks of memory. An application circuit must be mapped 
into an FPGA with adequate resources. While the number 
of CLBs/LABs and I/Os required is easily determined from 
the design, the number of routing tracks needed may vary 
considerably even among designs with the same amount of 
logic. Applications of FPGAs include digital signal 
processing, software-defined radio, aerospace and defense 
systems, ASIC prototyping, medical imaging, computer 
vision, speech recognition, cryptography, bioinformatics, 
computer hardware emulation, radio astronomy, metal 
detection and a growing range of other areas. 

 
IV. RESULTS AND DISCUSSION 

The proposed architecture is defined in verilog HDL and 
simulated using Xilinx ISE tool. Values are taken in a 16- 
bit multiplicand (ain) and multiplier (bin) operands. A 32 –
bit MAC out operand is defined which displays the result. 
A 32-bit Mul-out operand is also defined which displays 
multiplier result. Snapshot of result is shown in Fig. 5. 

 
Fig. 5 Simulated waveform for 16X16 MAC operation 

 
 The Code is synthesized using Xilinx XST tool and 

implemented using FPGA Spartan 3E starter kit. The device 
properties are shown in Fig. 6. The Design summary and 
Performance summary is as shown Table 2 and Table 3 
respectively. Xilinx X-power tool is used for approximate 
power estimation and analysis Table 4 and Table 5 gives 
approximate power analysis summary.   

 

 
Fig. 6. Design properties of FPGA Spartan 3E 

TABLE II 
Device Utilization summary 

Logic utilization Used Available 
Utilization 

(%) 
Number of slice 
flip flops 

42 3,840 1% 

Number of 4 input 
LUTs 

40 3,840 1% 

Number of 
occupied Slices 

30 1,920 1% 

Number of Slices 
containing only 
related logic 

30 30 100% 

Number of Slices 
containing 
unrelated logic 

0 30 0% 

Total Number of 4 
input LUTs 

42 3,840 1% 

Number used as 
logic 

40 ….. ….. 

Number used as a 
route-thru 

2 ….. ….. 

Clocks 1 …... …... 
Number of 
bonded IOBs 

5 173 2% 

Number of BUFG 
MUXs 

1 8 12% 

Average Fanout of 
Non-Clock Nets 

3.26 ….. ...... 

 
TABLE III 

Performance summary 
Final Timing Score: 0 (Setup: 0, Hold: 0) 

Routing Results: 
All Signals Completely 

Routed 
Timing Constraints: All Constraints Met 

 
TABLE IV 

Power and Temperature analysis 
Parameter Value 

Total quiescent power 0.04098(w) 
Total Dynamic power 0.00000(w) 
Total power 0.04098(w) 
Junction temperature 26.3oC 
Effective ThetaJA (oC/w) 30.9 
Max Ambient (oC) 83.7 

 
TABLE V 

Supply voltage summary 

Parameter 
Power 

(w) 
Voltag
e 

Range 
Iccq 
(A) 

Vcc int 0.01223 1.200 
1.140 

to 
1.260 

0.0102
0 

Vcc aux 0.02500 2.500 
2.375  

 to 
2.625 

0.0100
0 

Vcco 25 0.00375 2.500 
2.375 

to  
2.625 

0.0015
0 
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V. CONCLUSION 
A 16X16 multiplier-accumulator (MAC) is presented in 

this work. Radix-4 Modified Booth multiplier circuit is 
used for MAC architecture. Compared to other circuits, this 
architecture has the highest operational speed and less 
hardware count. By removing the independent 
accumulation process that has the largest delay and merging 
it to the compression process of the partial products, the 
overall MAC performance has been improved almost twice 
as much as in the previous work. 
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